
2.2.4 Form Logic
Adding logic to your forms can help make them "smart" by improving the user experience,
promoting cleaner data, and automating calculations.
Form logic includes:

calculations
cross-form logic
skip logic
constraints

When writing expressions for form logic it is necessary to use the correct syntax, including
punctuation and spaces. Form logic is not case-sensitive.

Referencing Items

There are two ways to reference an item on your form within a logic expression. Values can either be
an item reference (e.g. age) or the literal value of an item (e.g. yes or 1).
[table id=55 /]
To use values from other forms see below.

Conditions

Note: You can use either single quotes or double quotes, but single quotes are generally preferred
for clarity. You would use double quotes if the string already contained a single quote. If you want
this condition to work with multiple choices, use the formula twice with and / or.

[table id=56 /]

Operators & Boolean Logic

[table id=57 /]
Boolean operators (and & or) return a value of either True or False. If you have a sequence of
statements, all linked together with and, then to have a value of True every statement must be true;
if even one is not true, then the whole expression's value is False. With or, the threshold is much
lower: only one of the statements needs to be true to evaluate to True (though any number can be
true, as long as at least one is).

Parentheses control the order of operations of a statement and are often used even when not needed
to clarify and to increase the readability of the code (e.g.(${enddate}-${startdate}) * 2). Lastly,
modulus (mod) divides one number into another and returns the remainder. This has many uses well
beyond the EDC realm, but one of the simplest examples is that many programs use it to tell when a
number is even or odd (if mod 2 is 0 it's even, 1 it's odd), or to know if a number is equal to, or a
multiple of, another number (in this case if mod-ing by say 7, any value that results in 0 would be a
multiple of 7).



Calculations

Enter the formula from the syntax column in the Calculation field (Form Designer) or the
Calculate column (Form Template). Replace the items in brackets with the names of your own
items.

[table id=59 /]

Required

Enter the formula from the syntax column in the field that appears when you select Conditional in
the Required field (Form Designer) or the Required column (Form Template). Replace the items in
brackets with the names of your own items. Required conditions are only evaluated for items that
are currently null (for example, no value has been entered).

[table id=62 /]

Skip Logic/Relevant

Enter the formula from the syntax column in the field that appears when you select Skip Logic and
click the ${} Manually enter your skip logic in XLSForm Code button (Form Designer) or the
Relevant column (Form Template). Replace the items in brackets with the names of your own items.

[table id=60 /]

Relevant logic is ignored if the default column is populated for an item in a form. If an item has a
default value, it populates when the form is opened or when a repeat is added regardless of whether
the item is relevant or not. To avoid default values displaying before an item becomes relevant, use
triggered calculations so the values don’t populate until the item becomes relevant, or use an if()
statement. To use an if() statement in this case, use a default that has an if() statement that sets the
value to null if the relevant condition is not met and sets it to the desired default if the relevant
condition is met. 

Validation Criteria/Constraint

Enter the formula from the syntax column in the Constraint field (Form Designer) or the
Constraint column (Form Template). Replace the items in the syntax column in brackets with the
names of your own items. Constraint conditions are only evaluated for items that are currently non-
null (for example, a value has been entered).

[table id=61 /]

Advanced Form Logic

Hard Edit Checks (Form Template)

Hard edit checks are exclusive to the Form Template and can be used to enforce stricter standards
on data entry than soft edit checks. Because they can make data entry more difficult for users, it is
recommended that they be used only when the benefits to data quality outweigh the difficulties for
the study personnel.

All checks that are not explicitly defined as hard edit checks are soft edit checks in all forms. The



exception to this rule are forms used in the Participate module in which case all edit checks are
automatically hard edit checks.

When a value is entered and it violates a hard check on an item, the value is rejected before it is
stored, and the user will see a pop-up message. If the value entered causes a hard edit check to be
violated on a different item (such as one already entered and saved that passed the validation
criteria at the time) then the user will see an error message displayed on the item with the violated
hard check, and it will have an orange background (distinct from the soft red background used for
soft check error messages).

A user cannot navigate forward in the form or mark the form complete while a hard check error
message is present. The user can add a manual or automatic query to a hard check item to close the
form. However, the query will not hide the hard check error message.

Important: Special care must be taken when using relevant logic (hide/show) for an item with a
hard required check. Once an item has a value, a required hard check will not allow the item to be
cleared. To avoid this, the item's required logic must indicate that the item is required only when the
item's relevant logic is met. If this is not implemented properly, the user may get into a state where
they cannot clear an item even though that is the only way to make the data consistent with the
relevant logic.

For example, if the item (or the group it is in) has relevant logic ${yn_item} = 1, then the hard
required logic must also include ${yn_item} = 1 to ensure that the form works as intended. That
will enforce the hard required check when the item is relevant, but will not enforce the check when
the item is not relevant.

To Make a Hard Edit Check for a Required Item:

Click the survey tab in the Form Template spreadsheet.1.
Add a column with the header bind::oc:required-type.2.
Enter strict.3.

To Make a Hard Edit Check for a Constraint:

Click the survey tab in the Form Template spreadsheet.1.
Add a column with the header bind::oc:constraint-type.2.
Enter strict.3.

Cross-Checks (Form Template)

Referencing item values across forms and/or events

Reference the following examples when checking data across events, forms, repeating occurrences
in a single event, or repeating occurrences in separate events. There are also examples of how to
check specific values captured when a user adds a new participant.

The following steps apply all of the examples below, unless otherwise stated:

Create an item with a type of calculate.1.
In the bind::oc:external cell, for that newly added calculate field, select clinicaldata from2.
the drop-down list.
In the calculation cell for the new calculate item, copy and paste the appropriate sample text3.



from the examples below, and replace the bold, italicized text with the OIDs (or object names)
from your study.
Reference the new calculate field (as defined above) in any of the following cells to use the4.
externally referenced value for display or in a logic expression:

label
hint
calculation
constraint
required
relevant

(Optional) To optimize performance, configure the crossform_references column on the5.
survey sheet to include only the events that are needed for the cross-form logic on your form.
Cross-form logic will work without this step, but the form will load more slowly. Simply enter a
comma separated list of the Event OIDs used in your logic. Include current_event in the list if
any logic on the form uses [@OpenClinica:Current='Yes'].

For example, you would enter "SE_BASELINE,SE_VISIT2,current_event" if your form uses cross-
form logic containing the events, "SE_BASELINE", "SE_VISIT2", and
"[@OpenClinica:Current='Yes']".

Notes:

Even if your logic references an event by name instead of OID, you must include the Event
OID in the list.
If you use any of the examples that reference OIDs, the study must first be published in order
to generate OIDs. You can publish the study to the test environment, then locate and reference
the OIDs as needed (they do not change between the test & production environments), and
include those OIDs in the calculation field as indicated below.
You can reference object names instead of OIDs, but if the object name changes, you must
update the calculation to include the updated object name. OIDs do not change for objects, so
it is easier to maintain forms that include references to OIDs.
You can create any single calculation by using a combination of OIDs and object names.

Cross-check data against an item value in another event. Referencing the
item value by item name

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following to
the calculation cell, replacing the bold, italicized text with your specific object names:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@OpenClinica:EventName='
Event Name Here']/FormData[@OpenClinica:FormName='Form Name
Here']/ItemGroupData[@OpenClinica:ItemGroupName='Item Group Name
Here']/ItemData[@OpenClinica:ItemName='Item Name Here']/@Value

Cross-check data against an item value in another event. Referencing the
item value by OID

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following to
the calculation cell, replacing the bold, italicized text with your specific OIDs:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@StudyEventOID='Event
OID Here']/FormData[@FormOID='Form OID Here']/ItemGroupData[@ItemGroupOID='Item



Group OID Here']/ItemData[@ItemOID='Item OID Here']/@Value

Cross-check data against an item value in a different form that is in the same
event as this form

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following to
the calculation cell, replacing the bold, italicized text with your specific OIDs:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@OpenClinica:Current='Yes'
]/FormData[@FormOID='Form OID Here']/ItemGroupData[@ItemGroupOID='Item Group OID
Here']/ItemData[@ItemOID='Item OID Here']/@Value

Cross-check data against an item value in a specific repeat/row of a repeating
group

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following to
the calculation cell, replacing the bold, italicized text with your specific OIDs:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@StudyEventOID='Event
OID Here']/FormData[@FormOID='Form OID Here']/ItemGroupData[@ItemGroupOID='Item
Group OID Here'][Repeat Number Here]/ItemData[@ItemOID='Item OID Here']/@Value

Cross-check data against a value from a specific event occurrence in a
repeating event

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following to
the calculation cell, replacing the bold, italicized text with your specific OIDs:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@StudyEventOID='Event
OID Here'][Event Repeat Number Here]/FormData[@FormOID='Form OID
Here']/ItemGroupData[@ItemGroupOID='Item Group OID Here']/ItemData[@ItemOID='Item OID
Here']/@Value

Cross-check data against the event start date for the current event

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation cell:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@OpenClinica:Current='Yes'
]/@OpenClinica:StartDate

Cross-check data against the event start date in a different event

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation or default cell, replacing the bold, italicized text with your specific Event
OID:

substr(instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@StudyEventOID='Ev
ent OID Here']/@OpenClinica:StartDate, 0, 10)

Note: As noted in the previous example, you can also read in the full Event Start Date and Time for
display purposes using:



instance('clinicaldata')/ODM/ClinicalData/SubjectData/StudyEventData[@StudyEventOID='Event
OID Here']/@OpenClinica:StartDate

Cross-check using the Study Event OID of the Event the current form is in

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following text to
the calculation or default cell:

instance(‘clinicaldata’)/ODM/ClinicalData/SubjectData/StudyEventData[@OpenClinica:Current=’Yes’
]/@StudyEventOID

Note: This is very useful for reusing a form in several events and using relevant logic to hide/show
some items only when the form is opened for specific events.

Cross-check using the Study Event Repeat Key of the Event repeat occurrence
the current form is in

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following text to
the calculation or default cell:

instance(‘clinicaldata’)/ODM/ClinicalData/SubjectData/StudyEventData[@OpenClinica:Current=’Yes’
]/@StudyEventRepeatKey

Note: Include "current_event" in crossform_references to improve the form's performance. See #5
above for more information.

Cross-Check to Reference User Role or Username

You can add a calculate item to your form to store the User Role or Username of the current user.
You can then control which note items that user can see on a form by referencing that calculate
item in the relevant cell for the note item.

For example, you may have a note item on your form that provides instructions to the CRA
regarding what items must be verified for a form that only requires partial verification.

It is not necessary for any other user roles to see that note, so you can conditionally display the note
to Monitors only.

To do this, follow the steps below:

Use the instructions below to Lookup User Role.1.
Include the note item with instructions for SDV.2.
In the relevant cell for the noteitem, reference the calculate item that now stores the3.
current user's role or username.

For example, ${currentrole}="Monitor" (where currentrole is the name of the calculate item you
created)

Note: Only the standard roles are available for reference. If you created a custom role of "Junior
Monitor" based on the Monitor role, this only references the standard Monitor role. In the future,
custom role names will be available for reference as well.



Lookup User Role

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation cell:

instance('clinicaldata')/ODM/ClinicalData/UserInfo/@OpenClinica:UserRole

Lookup Username

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation cell:

instance('clinicaldata')/ODM/ClinicalData/UserInfo/@OpenClinica:UserName

Lookup Participant ID

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation cell:

instance('clinicaldata')/ODM/ClinicalData/SubjectData/@OpenClinica:StudySubjectID

Lookup Reference Study/Site OID

Add a calculate item. Include 'clinicaldata' in the bind::oc:external cell and add the following
text to the calculation or default cell

instance('clinicaldata')/ODM/ClinicalData/@Study acOID

Note: If the Participant exists at the Study-level, this will return the Study OID. If the Participant
exists at the Site-level, this will return the Site OID. The OID returned by this would need to be
processed further if the Study/Site ID is needed.

Functional approval by Kate Lambert. Signed on 2024-11-05 4:34PM

Approved for publication by Paul Bowen. Signed on 2025-02-10 2:01PM

Not valid unless obtained from the OpenClinica document management system on the day of
use.


